
_
I--
i---

<:
t,t}
,<
Z

,,llllll,ll I I¸¸ il iiliil ! : / i ¸

NASA TT F-25

f

,_ / + ) ."/ _: - +,

+

TECHNICAL TRANSLATION
F-+.2.5-

SMALL OSCILLATIONS OF TEIN RESIT,_.NT CONICAL SHELLS

By E. I. Grigolyuk

Translated from Izvesti_a Akademii Nauk SSSR,

O.T.D., no, 6, 1956

L .......

NATIONAL AERONAUTICS AND SPACE

WASHINGTON

ADMINISTRATION

May 1960





IQ
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL TRANSLATION F-25

SMALL OSCILLATIONS OF THIN RESILIENT CONICAL SHELL_*

By E. I. Grigolyuk**

M. Strutt [I] investigated axially-asymmetric cscillations of thin

resilient conical shells which were inelastic on their middle surfaces,
fastened at one end to a stiff diaphragm and free at the other, suitable

for calculation of the natural oscillation values of a conical loud-

speaker. He disregarded deviation of the curve in meridional direction
and allowed for inertia in all directions. The conditions of inelasticity

of the middle surface of a conical shell (E 1 = E 2 = Y12 = O) were met by

him in the following expressions for radial _, tangential _ and axial

displacement of the middle surface

II.

m

u ,,=¢o6=t '_'_,(r-- =) An co,_-_
R

where a is the radius of the smaller base of the conical shell, r is the

radius-of the parallel ring of the shell, _ is the polar angle in the plane

of the parallel ring, 2n is the number of peripheral half-waves in the

oscillations, _ is the _requency of the natural oscillation, t is the time,

A is a constant and _ is the angle of inclination of the generator to the
n
m

parallel ring of the shell.

Here there is on the inside ring (E = _) a lengthening of radius_E =

= u cos _ + w sin _ = 0 and the peripheral displacement v = O. Proceeding

further, the derivation was carried out by the energy methOd and a

formula obtained for determination of the frequency of the natural oscill-

ations, from which Raylelgh's formula follows by limiting transition for an

inelastic infinitely long cylindrical shell [2].

Urk and Hut [3], to verify the applicability of Strutt's formula, made

*Translated from IzvestiiaAkademii Nauk SSSR, O.T.D., no. 6, 1956,

pp. 35-44.

Institute of Mechanics of the Academy of Sciences, USSR.
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an experimental investigation of the determination of the radial frequen-

cies of the oscillations of thin aluminum shells with a longitudinally
welded seam; at a distance of one third of the generator from the outside

edge on the exterior surface of the shell there was fastened a piece of

iron, opposite which there was placed an electromagnet connected to a

variable frequency source, setting up an oscillation of the shell with

the same frequency as the source; with oscillation of the she]l, powder

sprinkled on its inside surface and adhering to it is dispersed along

the node line after a very short time. Thus the number of lines of

Junction in the oscillations is established. Non-conformity of Strutt's

formula with the experimental data appeared generally in the entire

diapason of frequencies. The difference in frequency was from two to

three times. This is understandable if it i_3 kept immind that the

conditions of inelasticity of the middle surface do not correspond to

the real picture of the oscillations of the shell.

Attempts to take the elasticity of the middle surface of a conical

shell into consideration in determining the frequencies of natural oscill-

ations were undertaken by V. E. Breslav_kii [4], who _sed the energy method,
taking the displacement expressions in the Same form as for a cylindrical .

shell with attached rims. The method of i_ltegration of. the expression for
potential energy, analogous to that taken in the literature [5] led to the

circumstance that instead of a conical shell, essentially, a cylindrical
shell with a certain mean radius not determined in the work was studied.

In the development of this work [6,7] we investigated the solution of

the problem of small natural oscillations of thin conical shells of any
pitch with attached rims; in particular, the solution for a closed conical

shell and new results for a cylindrical shell [8-14] are obtained.

lo

figure ) :

'

_- D [(x, _- _.,)' -- 2 (t -- p) (x,x s -- x,,')l } rdTds

The Equation of Motion. We viii solve the problem by the energy method.

The potential energy of a truncated conical shell is equal to (see

0.t)

where

!
,, = u"cos =, ** = 7"(u cos = -- ,:_ sin a + _')

t (__ v cos = ÷ u" + v'r co _=),7,,----";

I (w'r cos' _ + w" + v" sin _) (t.2)Z I _ I_" COS 2 _,z 2 _ y-j

! ,
"1, _ ;3 (w" r cosg -4- v'r sin mcos _,_ m'" cos z _ v sin mcos ,t)

B ----- E_l Ea'D = O.s)
1 -- p' ' 12(I -- _t i

whereupon _ = _ / cos _ is the distance from the apex of the shell at the
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generator middle surface, s_ - s. = _ which is the length of the shell at
modulus of elasticity and the Poisson's ratiothe generator, _ and _ are The A

of the material of the shell, and _ is the thickness of the shell.

Here a dot indicates differentiation with

respect to radius r and a hatchure with respect

to the angle _. The kinetic energy of the

$ _ oscillating shell is

I + ÷
@ Sa

where _is the specific gravity of the mater-

__l ial of the shell, g is the gravity acceleration.
Index t below on the right signifies differenti-
ation in time.

Let us assume that the conditions of the

attached rims are fulfilled:

..(s,, _)=. (s,,_) -- w(s,,_) -- v(_,,_) -- o.

The following expression8 for displacement fulfil these conditions:

zv = Azr" sin "_ (s -- ,,) sin n?t

,,n(, _ ,,)COSnyv -_ Azr' sin i

(_
u ----A3r" cos'" -- sin n?l

(z.5)

Nere _ = Al(t) , A2 = A2(t), A} = A3(t) are functions of time, m is

the number of axial half-waves, n is the number of seml-circular waves.

The formulas (1.5) fulfil the kinematic as well as the static condit-

ion8 for an oscillating cylindrical shell with attached rims.

Let us introduce expressions (i._) into formulas (1.1) and (1.4).

Then we get

' ' ' ksAl' ÷ 4A:A,+ _.A,A_ + k,A,A:2H ' kzA_'"_Tk:Az + TH" =_=T

. _" _ _. - tB/where K ,=_= T/.(k;A_ z + ksA_ s + k'A'tS) v (|.6)

k, = k_ + _41, k, = k_ + _/k,,

Lf_?
k,=k_, k, ----k,o+ _k,,. _= t_-£a) (t.7)



s 4 9 + .sins ]_.---_ { [_, ÷ 12o+ _ cos,=+

+ 24 [_.+ 8(I _- p)-}-_SmS] Xcos' = sina 4- 12 [24(1 ÷ p)+

+ 5_mSl ),s cos s = sin s _, + 16 [12 (f + t*) + _"=mSl }`=cos s = sin s = -I-

+ 2 {2 + .-_3ms)}`COSSa sin a ÷ 6),s cos = sin s = -}- 4).s sins =] ns}

+ 6(2÷ .,=,-_,) }`sin=co,,=+ 3_6+ 5_.=,__,sin,=cos,=+
+ 4 (3 + 5.Sm s) X' sin s ,. cos t = +

+2 (2--_) }`sin" coss . -I- 6Msin s =cos== + 4).' sins =]. s}

ks= sins ,=== _ {(t --p) [(t ÷ .sins) coss= + 2 (l -}- 2-Sr_ s) ). sin = cos'-= -}-

+ 6_mSM sin sz cos = + 4.SmSk= sin s =1 Jr"(cos = ÷ 2), sin =) ns}

-t- 6Assin s_ cos _' 4- 4ks sin s =}

ks= == _ {[9 d" 12 (3 + I*)"sin= -t- -'m'l cos s = -{-

+ 613 + 8 (3 + p),.s,.s + e"'l }`sin =cos'= -l- 3'_s"' [24(3 + I=)+
+ 5_m s] ks sin s = cosSa + 4-sin s !t 2 (3 + _). b 5_'mSl ks sin s= coss = +

+ tS.4m4M sin" = cos _, Jc 6 "4m.}`s sins = Jr- 3[!i-- t -t- _SmS) COP = Jr"

+ 2 (-- 1 + 2-sin s) ).sin = coss a _L 6.Sm'-M silts = COSa -I-

+ 4zSmSX*sins=]ns ÷ 3 (cos= -b 2},sin=)n'}

5c3- _/9 3 I] [20

_,_3 0 -- t=)] )s sin s .. coss = +

"t- 40(1 d- P) }`SsinS " cosa -!- 20(t ÷ p)).s sin= =}

3,o '5 _cos,=+t0(2__ _.-_,)Xsin=cos'=÷

Asia=
k,,= _ {(t--.=-_) cosS = -!- 2 (2-- r.,-_) ). sin =cosS = Jr

+ 6}`s sinS_" cos = -F 4ks sins=}

Jr. AsinS =..
== _ H-- ,"*÷ (2 -- _) -sins] cosS= + 2 [-- !* '{"

+ 2 (2 -- p) _tsms] ). sin = coss= + 6 (2 -- I=)_Sm=_.ssin s " cos =-F

÷ 4 (2 -- F) =sins}`* sins = ÷ 2 (cos = -F 2k sin =,_ns}

t5
_m-z_,)cos'= + 6 1o _) x s=n=co_s= +k,,= -_ [(2-{- ,,,,.,15 4S (2 + ,,,,.,

-[- --_-t-m=_ M sin s = COSs = +

+ 30),=sin'= cos= Ju 12k ssins=]



' [/2 IS ._n_) /- iO 151A, = As'= _ t / -- r-_v_, + cosS _" + 6 _z--,=-i_v,n, + _--_m,) k sin " cost = -F

-t" 307,4 sin s = cos _, -t- 12k s sin s =] (t .8)

a_/h, a is the radius of the upper base of the shell, h is its height.

The equation of motion is obtained from

As a

equations

(SA_K* _ 8110
.It + _,, = 0 0 = I, 2,:))

result we have a common system of three linear differential

/.A,Aj, + A,A, -t- k,A2 _ ksA3 = 0

/.AsA_ + k:A, + k, At "t- k,A= = 0

/ok)A_t 4- k,A= -I- ksAt -F A4A, = 0

(1.9)

which is fulfilled in

A, -----.-ocoso_, A, = vocos_, A= = .0cos_ (i.iO)

where w , v u are amplitudes of the components of displacement of the
o o

middle surface.

2. The Frequency of Natural Oscillation.

(1.9) and require that the system of three

give a non-null solution fgr v and u This gives
for the determination of_ w°' o o"

/(_') = aso°S @ a,_,t + al_ *' -_- a o = 0

whereupon
ao = k=(k,k,--k4=) + 2k(ksk6--k,k6_--k2k6 '

a, =--k,(ktk_--k4=) T k6=k)--klk3ks--k2k_k7 + ks'ks

a==klksk,+k2k:k, Tkak_ks, as=--k:ksks
Besides this

r gE

If we disregard inertia of

directions we get the following

the frequency

Let us substitute (I.I0) in

linear algebraic equations

a cubic equation

(2.1)

(2.2)

(2.3)

the shell in the axial and circumferential
linearized formula for determination of

ao )o.: = .,, a,, = -- k, (k,A'.-- A_') (2.4)



This can be converted to _,s= Ft+___CF_-t-_tFs
T, + _r. (2.s)

where

F, = kxo (k_'_o -- k,o s) Jr k4o (2k,ok6o -- ka¢k4o) -- k2ok6o"

F2 = k,o (k_k_t -t- k_,k=o -- 2k_ok_l) + k4o ( )_k6ok61-- k31k_o) -- k.kso t

Ya = k,o (k=]k=, -- k,]s), Tl = (k.ok2o -- k4o_)k,, T2 = klok.tko

(2.6)

The calculations show that in formula (2.5) members with_ 2

numerator and_in the denominator can be omitted. Hence

in the

F, + 4,F, (2.7)
Oct ----- - T1

The case of axially symmetric oscillations is not obtained from this

solution because of a not completely fortunate selection of approximate

functions; if it is assumed that _ and -w are proportional to cos _._,

the case of axially symmetrical oscillations would correspond to n : O.

3. Humerical Treatment of the Results. The numerical calculations

indicate that for determination of the frequencies of natural oscillation

of a conical shell with an angle of inclination of the generator_ _-_ 75 °

the formulas to be further developed can be used for cylindrical shells

of the same thickness, in which instead of the radius there should be

interpolated the half-sum of the radii of the bases of the conical shell

and instead of the length, the height of the conical shell.

Table 1 presents values of _. for a olosed conical shell (A = O) for

a series of proportions _/b (b is the radius of the base) and for 0( 3 °=

5° , IO°, 15° , 20° , 25° , 30° , 35° , 40°, _5_, 50° , 55°, 60° , 65° , 70°, 75° ,

80 ° , _5 °, 87 ° The corresponding values of n are given in Table 2

We assumed _ : I and _ = 0.3 in all _he calculations.

4. A C_lindrical Shell. For a cylindric_l shell _= 90 ° , _ = a/l, where

= the radius of the middle surface, _ t_le length of the shell. Let us

introduce the designations

Then instead of expressions (2.1) and (2.5) we get the corresponding

I ((_°:) = a:(_" + a_" + al(_" + ao = 0 (4.2)

(o.s =/, + k/: + I,'/, (4.3)
tl -I- kts

where

ao = II+/2k + Al'"
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TABLE i.- VAIMF_ OF _Umin FOR A CLOSED CONICAL SHELL

F

2

9

# Ib @._ o._ I o.ols ohl 0.009 0.006 o.0o7

m ---3•

5
t0
t5
2O
25
3O
35
4O
45
5O
55
6O
65
7O
75
8O
85
87

3
5

10
15
2O
25
3O
35
4O
45
5O
55
6O
65
70
75
8O
85
87

N

0.419
0.479
0.519
0.562
0.607
0.652
0.693
0.729
0.757
0.776
0.789
0.809
0.877
0.891
0.963

m

0.281 0.242
0.335 0.288
0.381 0.355
O.432 O.369
0.467 0.404
0.409 0.438
O.529 O.469
0.539 0.498
0.586 O.522

0.614 i O._i

O.644 0.582
0.688 0.582
0.695 0.627
0.701 0.628
0.8t0 0.672
0.779 0.7O3
0.968 0.818

0.t41
0.t93
0.236
O.287
0.31t
0.337
0.362
0.386
O.408
O.430
0.452
0.479
0.493
0.504
0.548
0.553
0.643
0.671

0.133
O. 184
0.223
0.267
0.293
0.319
0.344
0.366
0.390
0.409
0.429
0.45i
O.478
0.482
0.515
0.533
0.634
0.645

O.t02
0.126
O.t75
0.212
0.249
0.275
0.3O2
0.328
0.351
0.372
0.390
0.406
0.424
0.450
0.402
0.483
0.514
0.625
0.622

0.093i
0. t16
O. t62
0.201
0.23t
0.258
0.286
0.312
0.335
0.355
0.372
0..386
0.3tJ9
0.418
O.444
o. 453
0.434
0.589
0.600

0.006 0.005 0.004 O.OeO 0.002 O.OOt OJNC4_

0.0580
0.0748
0.t08
0.t34
O.157
O. t77
0.t93
0.209
0.224
0.238

0.0769
0.0967
0.138
O. t69
0.t99
0.223
0.244
0.264
0.282
0.299

0.0474
0.0823
0.O895
0.tt2
0.130
0.t48
0.t61
O. 174
O. 187
o.t08

0.0677
0.0877
O.124
0.154
0.178
0.200
0.222
O. 242
O. 259
0.274

0.0340
0.0448
0.(X_56
0.0814
0.0950
O.t07
0.tt9
0.t28
0.138
O.147

0.315
0.331
0.350
0.361
0.376
0.400
0.432
0.488
0._4

0.288
0.299
0.312
0.331
0.341
0.567
0.387
O. 445
0.550

0.251
0.264
O.279
0.288
0.3O7
0.319
0.349
0.408
0.472

0.210
O.222
0.231
0.243
0.256
0.276
0.298
0.3__
0.400

0.1"56
O.t65
O.t72
O. t82
O. t94
0.207
0.229

0.283
0.322

0.0697
0.106
0.149
0.t86
0.2t4
0.244
0.271
0.288
0.307
0.326
0.345
0.366
0.376
0.388
0.414
0.425
0.480
0.537
0.581

0.03t1
0.0408
0.0590
0.0736
0.0862
0.0968
O. t07
0.1t6
0.t25
0.133
0.141
O. 149
O. t57
O. 166
O.176
0. t90
0.211
0.256
o. 29/
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TABLE 2.- VALUES OF THE NL_ER OF HALF-WA_/ES n OF OSCILIATION OF

A CLOSED CONICAL SKELL

8 I b 0.03 0.02 O.Ofb O.Ot 0.009 0.008 0.007

e-_3
5

tO
t5
20
25
30
35
40
45
SO
55
O0
65
7O
75
80
85
87

3
5

tO
iS
20
25
30
35
4O
45
50
55
(DO
65
7O
15
8O
85
87

m

2
3
3
3
3
3
3
3
3
3
3
3
3
2
2

w

2
3
3
3
4
4
4
4
4
4
4
4
3
3
3
2
2

N

k

3
3
4
4
4

4
4

4
4

4
4

4
4

3
3
2
2

m

2
3
4
5
5

5
5
5
5
5
5
4
4
4
3
2
2

2
3
4
5
5
5
5
5
5
5
5
5
4
4
4
3
2
2

2
2
4
4
5
5
5
5
5
5
5
5
5
5
4
4
3
2
2

2
3
4
4
5
$
5
5
6
S
5
5
5
5
4
4
3
3
2

O.Q(_ J 0.005 0.004 0.003 0.002 O.OOI 0.0006

3
3
4
5
5
5
6
6
6
6
6
6
5
5
5
4
4
3
2

3
4
5
5
6
6
6
6
7
6
6
6
6
6
5
$
4
3
2

5
6
7
8
9
9
9

t0
10
10
9
9
9
8
8
?
6
5
4

2
3
4
5
5
6
6
6
6
6
6
6
6
S
,5
4
4
3
2

5
6
8
9
9

10
tO
10
10
10
tO
tO
9
9
8
7
6
5
4

f:::
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2--__= ,_ 3+_.,
+ 2='mS)'s ( 2_sm')'s + 2 t--iA -- /-- I----:-_ + t---_n'] "t-

-[-2Atzim4_4 [2zsmtX s + (I -I-!_) nil

2

/1 = (t -- es) =,m,_.4

/s = ( z'ms;_s "[- as) 4 -- (2as -- t)( 2a'ms_s -[- as) s + 2_m'_'l _2 (ns -- 2)

/s = z'm*)'4 [( 2_'m')'s -I- aS) s -- P2n*]

2 |

.is -- (_sms_s -I- as), t, -----(2*SmSk s q- aS)s "1- _-SmS),tnS (4.4)

In the formulas (4.4) the underlined members represent the solution
of W. FiUgge [8,9].

Retaining onl_ the principal members in (4.3) we find

G," == (! -- i_'m'x' -- • {='-').' -- ,'_' (4.5)
•(='m'x' + as)* -- " _ "'" _ '

which agrees with the formula obtained in the literature [103 by another
method.

Formulas (4.2), (4:3) and (4.5) determine the frequency of natural

oscillations of a closed elastic circular cylindrical shell fastened at
both ends.

The oscillations of cylindrical shells in particular have been

investigated [11-14], and in one paper [13] an analysis was made of a
series of results of solutions in which there are mentioned works not

mentioned in our bibliographical list.

A. P. Philippov [11] in a numerical example previously studied by

FIUgge [8,9] pointed out that for fairly large values of _ the frequencies

of the natural oscillations of a cylindrical shell with rigid fastenings

and rigidly attached rims are practically the same.

5. Comments. First of all we observed two cases investigated by V. E.

Breslavskii [4]. In the first _ = i0 cm, b = 17._ cm, _ • 60 cm, _ = 0.1

cm; as a result the mean radius of the con_cal shell equals R = 1/2 (a + b)

13_75 cm, the angle of inclination of the generator to the base _ =
: 82 ° 13', the height of the conical shell will he h = 1 sin _ = 59.44 cm.
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= 13.75 ca, h = .97 ca, _ = 88 _" 19'. __chanical characteristics

of the material were not given in the literature [4].

Let us assume that the_ were the aame as in another paper of that
author [14]: E = 1.93 x 1D v kg/cm2; _ = 0.3; _ = 0.00785 kg/cml. We will

take _ = 981 ca/ sec 2.

Xt is evident that the two conical shells differed little from the

cylindrical. Let us therefore interpolate in place of a conical shell a
cylindrical shell equivalent to it, with a radius of the middle surface
equal to the half-sum of the radii of the bases of the conical shell, with

a length equal to the height of the conical shell, and with the sa_e t_lck-
hess. Then for the two equivalent cylindrical shells k = 4.4077 x 10" ,
and the ratio of the radius to the length will be = 0.2313 and = 0.1618
respectively. We calculate according to formula (_.5). The lowest fre-

quency will be at • = 1. If f = w/_ for the first case the lowest fre-

quency will be at __ = 4, wher;upon fl = 2_ osc/sec, _ = 275 oec/sec,

f_ = 285 osc/sec; here f--land f3 = the calculated and experimental values

of the frequency obtained from the literature [4], f--2 = the value of the

frequency calculated according to formula (4'2). For the second example

(n • 3) _q -- 192 osc/sec, - 196 osc/sec, : 200 osc/sec.
The humber of half-waves on the perimeter of the shell agrees in the

two cases.

Thus the unnecessary complication introduced into the calculation of
a conical shell similar to the cylindrical was unwarranted. The calcul-

ations show that when _ 75 the above-suggest_.d substitution for the conical

shell of the equivalent cylindrical is always allowable with quite insignif-
icant error within the limits of accuracy of the determination of the fre-

quency of natural oscillations.

Let us analyze the numerical examples given by Urk and Hut [3]. The

dimensions of the shells examined by them are given in Table 3. The

Poiseon's ratio of the material of the shellequals_= 0.3, _/gG = 39.4
x I0 -II sec 2.

TABLE 5

t

2

2.45
2.45
2.45
2.45
2.45
o
2.45
3.9
5.3

4.os ! 20
4.05 11.4

4.05 I 7.8

4.05 I 6.44.05 4.2
5.6i t!.4
4.os I H.4
3.12 I !1.4
2.23 tl.4

0.605

O._G
0.605
0.605
0._
0
O.f,_
t.25
2.38

66.0
30.9
20.8
8.96

34.5
66.2

lit
218

32.5
32.5
32.5
32.5
32.5
32.5
32.5
32.5
32.5

t40 250
8O t50
54.7 t20
45.0 --
_.5

8O _50
5i
48
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AccordinE to Strutt [IS:

°_ = "6"_ -.I.-l_)y,',* .Z(l -- p) co_' _In _---;-

--._- sin, = (I -- ,') (4.'--,in' ,) -F a' In _l :

.2 !:I,"+',[" - ') ÷
,,' "' 0-" ')("'-+X'" l,_'--

The calculations for the indicated examples using formula (5.1) show
that the lowest values of the frequencies of natural oscillations of the

shell always occur at n = 2. They are given in Table 3, where fl and f_
correspond to the values found by formula (5.1) and established-_xperi --_

mentally.

As an example let us determine the lowest frequencies of natural oscill-

ations of a truncated conical shell in which _/a = 0.001, _= a_/h = 0.5,
I_ = 4o, 5o, 60, 7oo ( = 0.3).

We calculate using formula (2.7). We obtain accordingly 10_ 2
emin -

= 837 (n = 16), 957 (n = 15), 866 (n = 14), 620 (n = 12).

The non-conformlty of the experimental data with the calculations given

in Table 3 is explained also by a difference existing in the limiting con-

dltions of the problem. The oscillation of a conical shell, f_rmly closed

at one end and free at the other, can be the subject of special study.
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